How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? Arctic inference是一个开源库,集成了snowflake ai research开发的当前和未来的llm推理优化。 它利用vllm的自定义插件功能与vllm v0.8.4集成,用户安装后,arctic inference会自动为vllm添加本. [2]的主要贡献在于解决了如何在lasso selection之后进行valid inference的问题,通过lasso解的kkt condition刻画了lasso selection event的性质(这是一个比较复杂的model selection问题,可以证.